
Audit Report

Wed Aug 16 2023

contact@scalebit.xyz https://twitter.com/scalebit_

VELOCORE

https://twitter.com/scalebit_
https://www.scalebit.xyz/

VELOCORE Audit Report

1 Executive Summary

1.1 Project Information

Description VELOCORE is a dex that incentivize veVC holders or procure

veVC to strategically reallocate emissions towards their

liquidity pools.

Type Dex

Auditors ScaleBit

Timeline Mon Jul 17 2023 - Wed Aug 16 2023

Languages Solidity

Platform Linea

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/velocore/audit

Commits 8ccd8e02714b7ace420ca6e82d84c7fc6556ae43

179d215082383454881f6475bca10ca54af77495

https://github.com/velocore/audit
https://github.com/velocore/audit/tree/8ccd8e02714b7ace420ca6e82d84c7fc6556ae43
https://github.com/velocore/audit/tree/179d215082383454881f6475bca10ca54af77495

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

LEN src/lens/Lens.sol d94c368a954b51c13441bc5be2de

4f4c562c46cd

VLE src/lens/VelocoreLens.sol 4eeb811a43dcb11d90273260cd4b

2cb3eaa32d64

NFTHF src/NFTHolderFacet.sol c2c52c106c3cc7c4eed471df6e00

3565238a9622

SAU src/authorizer/SimpleAuthorizer.sol 8d5314930f180346754e9d4e4245

f3a03baacc72

VST src/VaultStorage.sol 6e1c1843dfddca8ae93a84498068

fe9d7ef6bd14

PBL src/lib/PoolBalanceLib.sol 32817fe2ef9e39b92faa4d9b99115

7ced74526ba

UME src/lib/UncheckedMemory.sol db9b77a013bb626de0bd4cc56877

685209345fa6

RPO src/lib/RPow.sol 184c46905583f19bbfb37fdc0e4bc

7456af78d29

TOK src/lib/Token.sol 0a3eff0bdc1e11518414b4762e7ff4

d39a17615c

WETHC src/pools/weth/WETHConverter.sol 4f111d5ac4355e5d3afe8c61decb0

d65af0fd094

SAT src/pools/Satellite.sol dc042cdf99668a1339c5553e88d0

b3e2f7816fa5

STG src/pools/SingleTokenGauge.sol 95e6947708303ed46f2b082eee21

ea3065ee1801

SUP src/pools/SatelliteUpgradeable.sol 081dd6a3b3472ffdb32972412db4

85f4cb188475

POO src/pools/Pool.sol 1efaa16a0b326f4a038b8e5b83e3

85ed60d80cfb

WPO src/pools/wombat/WombatPool.sol 8f3f93a30edcab4cec0c97e45697

8ad5709baddc

LBF src/pools/linear-bribe/LinearBribeF

actory.sol

21ed575e32d8ce92e978a51364a2

267501da0eaa

LBR src/pools/linear-bribe/LinearBribe.

sol

9021590e14f5a113b0051bd1ed273

43761a64dc8

PWLPT src/pools/PoolWithLPToken.sol 3fe6c9159520695fc8f72e232bb2

3710d70349ae

CPP src/pools/constant-product/Const

antProductPool.sol

d9961af9bb2cf466b7ef8812ef0bc

6d3cb67ff9f

CPPF src/pools/constant-product/Const

antProductPoolFactory.sol

46e208f72749b746158aa53636c0

d015173c1bad

CPL src/pools/constant-product/Const

antProductLibrary.sol

39d4ccb42356072e25ecd2d6416

9fc9434525044

CCP src/pools/curvecrypto/CurveCrypto

Pool.sol

306e6ba605a922744273a012910d

d45b2cd883cb

CCPF src/pools/curvecrypto/CurveCrypto

PoolFactory.sol

d0640c7e6dd3b9e41bc2aa43b00

a112c72421a6f

VC src/pools/vc/VC.sol 11abcb9e10bf312f52ca74dba6440

57c9245c9f2

VVC src/pools/vc/VeVC.sol 791b11738fa7639c2102d1071b70cf

a399602c22

SFA src/SwapFacet.sol 95b6e3ea8528c14d624b12a65f5d

6711d7b8bde4

DIA src/Diamond.yul 6b5da22bc8580c0d092df5f4e79a

ff2c4a826087

AFA src/AdminFacet.sol e4145a739a558b22fff5a56a9bed0

d2174d2022c

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 3 2 1

Informational 0 0 0

Minor 0 0 0

Medium 2 1 1

Major 1 1 0

Critical 0 0 0

1.4 ScaleBit Audit Breakdown

ScaleBit aims to assess repositories for security-related issues, code quality, and compliance

with specifications and best practices. Possible issues our team looked for included (but are

not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow

Number of rounding errors

Unchecked External Call

Unchecked CALL Return Values

Functionality Checks

Reentrancy

Denial of service / logical oversights

Access control

Centralization of power

Business logic issues

Gas usage

Fallback function usage

tx.origin authentication

Replay attacks

Coding style issues

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and

"Formal Verification" strategy to perform a complete security test on the code in a way that

is closest to the real attack. The main entrance and scope of security testing are stated in

the conventions in the "Audit Objective", which can expand to contexts beyond the scope

according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows /

parameter verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

2 Summary

This report has been commissioned by VELOCORE to identify any potential issues and

vulnerabilities in the source code of the VELOCORE smart contract, as well as any contract

dependencies that were not part of an officially recognized library. In this audit, we have

utilized various techniques, including manual code review and static analysis, to identify

potential vulnerabilities and security issues.

During the audit, we have identified 3 issues of varying severity, listed below.

ID Title Severity Status

PWL-1 approve Function Can Be Front-

run Resulting in Token Theft

Medium Fixed

AFA-1 The Proxy Contract Must Implement

A Valid IDiamond Interface

Major Fixed

SAU-1 canPerform Is Broken Lacking of

Contract Check

Medium Acknowledged

3 Participant Process

Here are the relevant actors with their respective abilities within the VELOCORE Smart

Contract:

Owner

Owner can upgrade the implementation address by calling the upgrade () function.

Authorized user

Authorized user can set fee amount by calling the setFeeAmount() function.

Authorized user can set fee token by calling the setFeeToken() function.

Authorized user can set treasury address by calling the setTreasury() function.

Authorized user can add a new token to the protocol by calling the addToken()

function.

Authorized user can set a new fee value by calling the setFee() function.

Authorized user can set a new decay rate value by calling the setDecayRate()

function.

Authorized user can register a new instance by calling the register() function.

Authorized user can trigger the upgrade of the contract's implementation to a new

version by calling the upgradeTo() function.

Authorized user can update the contract's implementation and calls a function on the

new implementation by calling the upgradeToAndCall() function.

Authorized user can associate a given implementation address with multiple function

signatures by calling the admin_setFunctions() function.

Authorized user can pause or resume a specific feature or functionality within the

contract by calling the admin_pause() function.

Authorized user can add a new facet to the contract by calling the

admin_addFacet() function.

Authorized user can update the address of an authorizer contract by calling the

admin_setAuthorizer() function.

Authorized user can update the address of a treasury contract by calling the

admin_setTreasury() function.

Authorized user can execute a series of operations by calling the execute() function.

Authorized user can withdraw multiple types of tokens from the contract by calling the

withdrawTokens() function.

Authorized user can withdraw tokens of the type ballot from the contract by calling the

withdrawTokens() function.

User

User can exchange tokens by calling the execute() function.

User can perform operations and return their result by calling the query() function.

User can perform a complex set of operations related to managing bribes and rewards

by calling the extort() function.

User can deploy a new constant product pool using the deploy() function.

User can calculate the spot price of a pair of tokens using the spotPrice() function.

User can retrieve gauge data related to users for a collection of Wombat pools using

the wombatGauges() function.

User can collects gauge data for a specific user from a range of canonical pool using

the canonicalPools() function.

User can collects gauge data for a specific user from a range of canonical pool using

the canonicalPools() function.

User can query gauge data for a specific user from a given pool using the

queryGauge() function.

User can execute various operations related to liquidity provision and token swaps

within pools using the velocore__execute() function.

4 Findings

PWL-1 approve Function Can Be Front-run Resulting in
Token Theft

Severity: Medium

Status: Fixed

Code Location:

src/pools/PoolWithLPToken.sol#81-87

Descriptions:

The approve() function has a known race condition that can lead to token theft. If a user

calls the approve() function a second time on a spender that was already allowed, the

spender can front-run the transaction and call transferFrom() to transfer the previous

value and still receive the authorization to transfer the new value.

 functionfunction approveapprove((addressaddress spender spender,, uint256uint256 amount amount)) publicpublic virtual virtual returnsreturns ((boolbool)) {{

 _allowance_allowance[[msgmsg..sendersender]][[spenderspender]] == amount amount;;

 emitemit ApprovalApproval((msgmsg..sendersender,, spender spender,, amount amount));;

 returnreturn truetrue;;

 }}

Suggestion:

Consider implementing functionality that allows a user to increase and decrease their

allowance similar to Lido's implementation. This will help prevent users losing funds from

front-running attacks.

/**/**

 * @notice Atomically increases the allowance granted to `_spender` by the caller by* @notice Atomically increases the allowance granted to `_spender` by the caller by

`_addedValue`.`_addedValue`.

 **

 * This is an alternative to `approve` that can be used as a mitigation for* This is an alternative to `approve` that can be used as a mitigation for

 * problems described in:* problems described in:

 * https://github.com/OpenZeppelin/openzeppelin-* https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/master/contracts/token/ERC20/IERC20.sol#L42contracts/blob/master/contracts/token/ERC20/IERC20.sol#L42

 * Emits an `Approval` event indicating the updated allowance.* Emits an `Approval` event indicating the updated allowance.

 **

 * Requirements:* Requirements:

 **

 * - `_spender` cannot be the the zero address.* - `_spender` cannot be the the zero address.

 * - the contract must not be paused.* - the contract must not be paused.

 //

functionfunction increaseAllowanceincreaseAllowance((addressaddress _spender _spender,, uint256uint256 _addedValue _addedValue)) publicpublic returnsreturns ((boolbool))

{{

 _approve_approve((msgmsg..sendersender,, _spender _spender,, allowances allowances[[msgmsg..sendersender]][[_spender_spender]]..addadd((_addedValue_addedValue))));;

 returnreturn truetrue;;

}}

/**/**

 * @notice Atomically decreases the allowance granted to `_spender` by the caller by* @notice Atomically decreases the allowance granted to `_spender` by the caller by

`_subtractedValue`.`_subtractedValue`.

 **

 * This is an alternative to `approve` that can be used as a mitigation for* This is an alternative to `approve` that can be used as a mitigation for

 * problems described in:* problems described in:

 * https://github.com/OpenZeppelin/openzeppelin-* https://github.com/OpenZeppelin/openzeppelin-

contracts/blob/master/contracts/token/ERC20/IERC20.sol#L42contracts/blob/master/contracts/token/ERC20/IERC20.sol#L42

 * Emits an `Approval` event indicating the updated allowance.* Emits an `Approval` event indicating the updated allowance.

 **

 * Requirements:* Requirements:

 **

 * - `_spender` cannot be the zero address.* - `_spender` cannot be the zero address.

 * - `_spender` must have allowance for the caller of at least `_subtractedValue`.* - `_spender` must have allowance for the caller of at least `_subtractedValue`.

 * - the contract must not be paused.* - the contract must not be paused.

 //

functionfunction decreaseAllowancedecreaseAllowance((addressaddress _spender _spender,, uint256uint256 _subtractedValue _subtractedValue)) publicpublic returnsreturns

((boolbool)) {{

 uint256uint256 currentAllowance currentAllowance == allowances allowances[[msgmsg..sendersender]][[_spender_spender]];;

 requirerequire((currentAllowance currentAllowance >=>= _subtractedValue _subtractedValue,,

"DECREASED_ALLOWANCE_BELOW_ZERO""DECREASED_ALLOWANCE_BELOW_ZERO"));;

 _approve_approve((msgmsg..sendersender,, _spender _spender,, currentAllowance currentAllowance..subsub((_subtractedValue_subtractedValue))));;

 returnreturn truetrue;;

}}

Resolution:

Implement decreaseAllowance() and increaseAllowance() functions.

AFA-1 The Proxy Contract Must Implement A Valid IDiamond
Interface

Severity: Major

Status: Fixed

Code Location:

src/AdminFacet.sol#81-101

Descriptions:

The provided Diamond.yul and AdminFacet.sol contracts do not fully conform to the

EIP-2535 (Diamond Standard). Specifically, they lack the implementation of the IDiamond

interface and do not emit the DiamondCut event when the set of functions in the diamond

is modified.

The Diamond.yul contract is supposed to act as a general diamond proxy contract. As per

EIP-2535, it should implement the IDiamond interface, which includes the diamondCut

function among others.

On the other hand, the AdminFacet.sol contract is responsible for modifying the diamond

structure. When facets are added or function selectors are assigned to implementations via

the admin_setFunctions , admin_addFacet and admin_setAuthorizer functions, a

DiamondCut event should be emitted to track these changes.

However, the AdminFacet.sol contract does not emit such events, which represents a

departure from the specifications set out in EIP-2535.

 functionfunction admin_setFunctionsadmin_setFunctions((addressaddress implementation implementation,, bytes4bytes4[[]] calldatacalldata sigs sigs)) externalexternal

authenticate authenticate {{

 forfor ((uint256uint256 i i == 00;; i i << sigs sigs..lengthlength;; i i++++)) {{

 _setFunction_setFunction((sigssigs[[ii]],, implementation implementation));;

 }}

 }}

 /**/**

 * @dev delegatecalls the implementation's initializeFacet()* @dev delegatecalls the implementation's initializeFacet()

 //

 functionfunction admin_addFacetadmin_addFacet((IFacet implementationIFacet implementation)) externalexternal authenticate authenticate {{

 bytesbytes memorymemory data data == abi abi..encodeWithSelectorencodeWithSelector((IFacetIFacet..initializeFacetinitializeFacet..selectorselector));;

 assemblyassembly (("memory-safe""memory-safe")) {{

https://eips.ethereum.org/EIPS/eip-2535

 letlet success success :=:= delegatecalldelegatecall((gasgas(()),, implementation implementation,, addadd((datadata,, 3232)),, mloadmload((datadata)),, 00,,

00))

 ifif iszeroiszero((successsuccess)) {{ revertrevert((00,, 00)) }}

 }}

 }}

In EIP-2535, it states that:

All diamonds must implement the IDiamond interface.

During the deployment of a diamond any immutable functions and any external functions

added to the diamond must be emitted in the DiamondCut event.

A DiamondCut event must be emitted any time external functions are added, replaced, or

removed. This applies to all upgrades, all functions changes, at any time, whether through

diamondCut or not.

Suggestion:

To bring the contracts into compliance with EIP-2535, you should consider the following

modifications:

Implement the IDiamond interface in Diamond.yul , including the diamondCut

function and other required functions specified in the interface.

Modify AdminFacet.sol to include the declaration and emission of the DiamondCut

event. This event should be emitted whenever the admin_setFunctions ,

admin_addFacet and admin_setAuthorizer functions successfully modify the

diamond's structure.

Resolution:

InspectorFacet.sol is loupe and VaultStorage.sol:_setFunction now emits the correct event.

SAU-1 canPerform Is Broken Lacking of Contract Check

Severity: Medium

Status: Acknowledged

Code Location:

src/authorizer/SimpleAuthorizer.sol#12-14

Descriptions:

As comments suggested, canPerformshould check certains roles can perform actions in

specific contract. However, the code implementations lack of the check for that contract.

Making the roles granted for certain actions have ability to execute those actions across the

contracts.

interfaceinterface IAuthorizerIAuthorizer {{

 /**/**

 * @dev Returns true if `account` can perform the action described by `actionId` in the* @dev Returns true if `account` can perform the action described by `actionId` in the

contract `where`.contract `where`.

 //

 functionfunction canPerformcanPerform((bytes32bytes32 actionId actionId,, addressaddress account account,, addressaddress where where)) externalexternal viewview

returnsreturns ((boolbool));;

}}

functionfunction canPerformcanPerform((bytes32bytes32 actionId actionId,, addressaddress account account,, addressaddress where where)) externalexternal viewview

override override returnsreturns ((boolbool)) {{

 returnreturn hasRolehasRole((DEFAULT_ADMIN_ROLEDEFAULT_ADMIN_ROLE,, account account)) |||| hasRolehasRole((actionIdactionId,, account account));;

}}

Thus, a malicious role would be able to execute some actions out of expectations and bypass

the checks.

 modifiermodifier authenticateauthenticate(()) {{

 requirerequire((

IAuthorizerIAuthorizer((addressaddress((uint160uint160((uint256uint256((_readVaultStorage_readVaultStorage((SSLOT_HYPERCORE_AUTHORIZERSSLOT_HYPERCORE_AUTHORIZER))

 keccak256keccak256((abiabi..encodePackedencodePacked((bytes32bytes32((uint256uint256((uint160uint160((factoryfactory)))))),, msg msg..sigsig)))),,

msgmsg..sendersender,, addressaddress((thisthis))

)),,

 "unauthorized""unauthorized"

));;

 __;;

 }}

functionfunction authenticateCallerauthenticateCaller(()) internalinternal {{

 bytes32bytes32 actionId actionId ==

keccak256keccak256((abiabi..encodePackedencodePacked((bytes32bytes32((uint256uint256((uint160uint160((addressaddress((thisthis)))))))),, msg msg..sigsig))));;

 requirerequire((

IAuthorizerIAuthorizer((StorageSlotStorageSlot..getAddressSlotgetAddressSlot((SSLOT_HYPERCORE_AUTHORIZERSSLOT_HYPERCORE_AUTHORIZER))..valuevalue))..canPerfocanPerfo

 actionIdactionId,, msg msg..sendersender,, addressaddress((thisthis))

)),,

 "unauthorized""unauthorized"

));;

}}

Suggestion:

Either change the canPerformcode to check the where address or make it explicit that

roles can perform actions across the contracts.

Resolution:

Acknowledged by Velocore dev, that where is indented not to check, but left to be used in

the future.

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or to

optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited review

at the time provided. Results may not be complete and do not include all vulnerabilities. The

review and this report are provided on an as-is, where-is, and as-available basis. You agree

that your access and/or use, including but not limited to any associated services, products,

protocols, platforms, content, and materials, will be at your own risk. A report does not imply

an endorsement of any particular project or team, nor does it guarantee its security. These

reports should not be relied upon in any way by any third party, including for the purpose of

making any decision to buy or sell products, services, or any other assets. TO THE FULLEST

EXTENT PERMITTED BY LAW, WE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, IN

CONNECTION WITH THIS REPORT, ITS CONTENT, RELATED SERVICES AND PRODUCTS,

AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT INFRINGEMENT.

